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AL -S ATELL I TE 

HEORY TO COMPUTATION OF THE 

STATE TRANS 

By George H. Born and James C. Kirkpatr ick 
Manned Spacecraft Center 

SUMMARY 

Brouwer's solution of the artificial-satellite problem without drag is used to 
obtain analytical state-transition-matrix expressions that include secular as well as 
long- and short-period effects of planetary oblateness. A comparison of the accuracy 
of several different models of the state transition matrix is made. These models 
include (1) a Keplerian model, (2) a model based on first- and second-order secular 
terms in Brouwer's theory, and (3)  a model including first- and second-order secular 
terms in addition to first-order long- and short-period perturbations. It is demon- 
strated that the accuracy of the Keplerian model degenerates rapidly in comparison 
to either of the models based on Brouwer's theory. In addition, it is shown with nu- 
merical results that including the effects of long- and short-period perturbations im- 
proves the accuracy of the transition matrix by one to two orders of magnitude over 
the secular model and three to four orders of magnitude over the Keplerian model. 

I NTRODUCTI ON 

etermination of the state transition matrix is a necessity in orbit determina- 
tion and navigation theory. Numerous methods that can be used to compute the state 
transition matrix exist. These methods include direct integration of the variational 
equations, numerical differentiation, and various analytical formulations. For ex- 
ample, a Keplerian model for any type of conic motion has been developed by Good- 
year (ref. 1). Recently, Ditto (ref. 2) applied the Peano-Baker method to the 
integration of the variational equations. In this method, numerical integration is 
applied only to the departure from a simplified analytical model. 

The objective of this study was to obtain an analytical formulation of the state 
transition matrix that accounted for the effects of planetary oblateness for use in long- 
term satellite navigation studies. The method used was to differentiate the solutions* 
in Brouwer' s artificial-satellite theory (ref. 3) to obtain the transition matrix in 
terms of Keplerian elements. Although only the oblateness was considered in this 
study, the inclusion of long-period and secular effects for the remaining harmonics 
in Brouwer's theory would be a simple extension. 



A numerical comparison of the accuracy of several different models of the 
transition matrix was made. These models included (1) a Keplerian model; (2) a 
model based on first- and second-order secular perturbations in 52, w, and M and 
mean values of a, e, and I as given by Brouwer's theory; and (3) a model includ- 
ing first- and second-order secular perturbations in 52, w,  and M in addition to 
long- and short-period perturbations in all the orbital elements. The terminology 
first - and second-order perturbations means that the perturbations are proportional 
to J20 and J20 , respectively. 

In this study, model 2 will be referred to as the secular model, and model 3 
will be called the complete model. Both models require the use of mean elements to 
be accurate through the first order. The reason epochal elements are not used in the 
secular model, which frequently is done erroneously, is discussed in the section on 
analysis. 
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SYMBOLS 

A 

a 

a 

B 

e 

A 

F2** 

f 

G 

H 

I .  

J20 

K2 

matrix of time-dependent coefficients 

semimajor axis 

semimajor axis based on total energy 

generic term for  transition matrix 

eccentricity 

second-order portion of doubly averaged Hamiltonian 

true anomaly 

G cos I 

inclination 

oblateness coefficient 

2 
J 2 ~ r e  

2 

2 



L 

M mean anomaly 

N 

n mean motion 

n mean of mean motion 

n 

R relative e r ro r  

dimension of the state vector 

- 

mean motion based on total energy A 

r radius 

r mean radius of planet e 

S column vector of Cartesian coordinates 

t time 

V velocity 

X perturbation vector 

x, y, e Cartesian coordinates 

E column vector of orbital elements 

8 cos I 

P gravitational constant 

@(t, t ) state transition matrix 0 

f2 longitude of ascending node 

w argument of pericenter 

Subscripts : 

0 initial value 

P evaluated at  pericenter 

S secular rate 
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Operators : 

( - 1  

(' 1 
(v 9 - )  mean elements 

(*) 

derivative with respect to time 

first -order averaged variables 

evaluated on the reference orbit 

ANALYS I S  

Theoretical Development of State Transition Matrix 

The matrix differential equation for the state transition matrix is given by 

&(t7 to) = A@(t, to) 

where 

An element of @(t, to) is given by 

where (i, j = 1, 2, . . * ,  N), c i  is a generic symbol for any of the orbital elements, 
and N is the dimension of the state vector. Also 

a;(t) 
A=aE(t) (4) 

Equation (1) represents a system of N by N linear differential equations with known 
time-dependent coefficients. This so-called variational equations system may be 
solved by numerical integration. 
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One alternative to integration of the variational equations is the differentiation 
of an analytical solution, such as Brouwer's, with respect to the initial conditions to 
obtain the state transition matrix directly. Brouwer' s theory separates the secular 
and periodic terms; therefore, contributions to the state transition matrix of the sec- 
ular and periodic portions also are computed separately. This separation permits the 
computation of a transition matrix based on any combination of secular and periodic 
terms desired. 

Because Brouwer's theory is written in terms of mean elements and because 
differentiation with respect to epochal elements is desired, the chain rule must be 

* 

used; that is, 

@ t t  = 
( 7  0) 

where 

and 

(&)= . 

(5)  

The matrix ~ ~ ~ ~ ~ b ; ' ]  - is a constant matrix that needs only to be calculated once. If, 

the transition matrix in terms of Cartesian coordinates is desired, equation (5) must 
be multiplied by the appropriate transformation matrices as follows 

@(t, to) = I 1  3q-q 
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where S represents the vector of Cartesian coordinates. The matrix as/& is 
obtained by differentiation of the expressions that relate the Cartesian coordinates and 
the orbital elements. These expressions may be found in most fundamental celestial 
mechanics texts (e. g. , ref. 4). Because the transformation that relates the Cartesian 
coordinates to the orbital elements is unique, 

[q] = [d-l 
and this matrix is formed only once. 

The differentiation of Brouwer's solutions with respect to the mean elements so 
that the results are accurate through the first order in the periodic terms and through 
the second order in the secular terms is straightforward but lengthy. Consequently, 
the results a r e  not given in this study. However, a copy of the computer program 
containing the results will be supplied by the authors on request. 

The analytical models discussed are based on Keplerian elements and, there- 
fore, are unacceptable for circular orbits or  for orbits with zero inclination. In addi- 
tion, Brouwer's theory is invalid within approximately f 2" of the critical inclination. 
The problems associated with zero eccentricity and inclination may be eliminated 
with a redefinition of the orbital elements as suggested by Lyddane (ref. 5). 

Computation of Mean Elements 

The mean elements for Brouwer's theory are obtained accurate to the first 
order in J20 by evaluation of Brouwer's solutions at epoch and by replacement of 
mean elements with epochal elements in the first-order terms. For example, the 
mean value of a is given by 

Computing mean elements with epochal elements in the first-order terms results in 
second-order e r ro r s  in the mean elements. As noted in Breakwell and Vagners 
(ref. 6), iteration of Brouwer's solution for the mean elements cannot reduce this 
e r ror  because the solutions do not contain second-order periodic terms. However, 
the secular portion of Brouwer's theory is accurate to the second order; therefore, 
the mean value of a must be accurate to the second order to avoid second-order sec- 
ular e r ro r s  being introduced in the mean value of the mean motion through the term 

1/2 
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The mean value of the mean motion correct to the second order may be computed 
according to Breakwell and Vagners (ref. 6) or Hildebrand (ref. 7). In terms of the 
total energy, is defined as 

where 

Replacing equation (12) with its average through second order and using equa- 
tion (11) results in equation (13). 

The quantity F2** is the second-order portion of the Hamiltonian averaged with 
respect to mean anomaly and argument of pericenter. It is given by equation (29) of 
Brouwer (ref. 3) as 

Equation (13) now ,may be solved for Z, which is the desired result. 

The use of mean elements is necessary to maintain the state transition matrix 
accurate to the first order. If epochal elements a r e  used in a first-order secular 
model for the transition matrix, as commonly is done, a first-order secular e r ro r  in 
the mean anomaly will exist. In fact, inclusion of the first-order secular term in the 
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computation of the mean motion may result in a transition matrix that is less accurate 
than a Keplerian model. To demonstrate this situation, the solution for the mean 
value of the mean motion through the first order is considered. 

1/2 2 
I-1 re J 2 ~  

2 3  at?7' q 
(-1 + 3e2> 

To the first order 

a'' = a. - O(Jz0) (IC) 

Denoting the term of order J20 by J2d and substituting equation (16) into equa- 
tion (15) yields 

2 

7/2 [. 2o ,f e (-1 + 3s2) ] (17) 
1/2 

El 1/2 
El - 

3/2 + 

n =  
(ao - J20'> (ao - J20'> 

Expansion of equation (17) and retention of first-order terms result in 

-3/2 3 -5/2J 
aO + - a  2 0  20' + a o  

1/2 
The first-order e r ror  introduced by the use of = El is 7 

0 

The first-order e r ror  introduced by use of equation (15) with the epochal value for a is 

3 1/2 -5/2 
zI-1 a. J2d 
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Therefore, if the initial conditions are such that the two e r ro r  terms of equation (19) 
are of opposite sign, the Keplerian model will be more accurate than a secular model 
using epochal elements. 

Discussion of Comparison Cr i ter ia  

The three analytical models considered, the Keplerian, the secular, and the . 
complete model, were evaluated by comparison with numerical integration of the 
variational equations. The numerical integration w a s performed w i t h a double- 
precision fourth-order Runge Kutta algorithm. The test cases used were a highly 
elliptical orbit around Mars  and a near-circular orbit around the Earth. The Mars- 
orbital data were run because the results could be applied to long-term navigation 
studies for a Mars  orbiter. All results presented are for transition matrices trans- 
formed to Cartesian coordinates. The disturbing force in all cases was planetary 
oblateness. 

It was assumed that Brouwer's theory for an Earth satellite is valid for a Mars  
orbiter. The fundamental assumption for Brouwer' s theory was that all perturbing 
effects are second order compared to oblateness. 

To compare the accuracy of the various models, the relative e r rors  as defined 
by Ditto (ref. 2) were used. The relative e r ror  is defined as follows. If \!All is the 
norm of the transition matrix obtained by numerical integration of the variational 
equations; that is, 

and IlBil is the norm of the transition matrix computed from any of the analytical 
solutions, then the relative e r ror  R is defined as 

IIA - Bll 
= -llAll 
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Discussion of Figures 
The relative e r ror  was computed at 0.02-day increments for 25 days for the M a r s  

satellite and at 10-minute increments for 14 400 minutes for  the Earth satellite. The 
results for the M a r s  orbiter are shown in figure 1. The initial conditions for the Mars  
orbiter are as follows. 

no = 28.66" 8 a. = 0.414245 X 10 feet 

e = 0 . 7  
0 

W = 318.116" 
0 

M = 0" 
0 Io = 19.583" 

J20 = 0.002011 

The exponent of R is approximately equal to the number of digits of agreement 
between the analytical model and the integration of the variational equations. As seen 
from figure 1, the complete model agrees to four places; the secular model agrees to 
two places; and, after the first 2 days, the Keplerian model fails to agree even to one 
digit with integration of the variational equations. 

The relative e r ro r s  for an Earth orbiter are presented in figure 2. The initial 
conditions for this orbit are as follows. 

n = 45" 8 
0 

a = 0.2378932 X 10 feet 
0 

e =0.1 
0 

, 
Io = 75" 

w = 0" 
0 

M = 0" 
0 

I J20 = 0.001083 

The agreement of the various models was  approximately the same as for  the Mars  or- 
biter except that agreement to one more place was obtained with the secular model. 

The nominal trajectory for  each model was generated with the state-propagation 
equations corresponding to the particular model. For example, the Keplerian results 
were based on a Keplerian nominal, while the secular-model nominal was generated 
from the following relationships. 



1 a(t) = a" 

e(t) = et'  

I(t) = I" 

SZ(t) = SZ" -I- h s A t  

w(t) = W" + bsAt  

M(t) = M" + MsAt 

To demonstrate the magnitude of e r rors  encountered by propagating a perturba- 
tion vector with the various models, a small perturbation vector was mapped with the 
analytical transition matrices and with the transition matrix obtained by numerical 
integration of the variational equations. These results were compared to actual inte- 
gration of the equations of motion with the perturbed initial conditions. 

For all results shown, the initial conditions were perturbed by the addition of the 
following perturbation vector to the initial state vector. 

=(to) = 

500 f t  

500 f t  

500 f t  

I. o ft/sec 

I .  0 ft/sec 

I. 0 ft/sec 

This perturbation vector was propagated for both the Mars and Earth satellite 
orbits. The results for the Mars orbit a r e  shown in figures 3 to 16. The magnitudes 
of the position- and velocity-perturbation vectors for the Mars  orbiter computed from 

a r e  shown in figures 3 and 10, respectively. The results shown in these two figures 
a r e  computed from the Keplerian transition matrix; however, differences between all 
models a r e  indiscernible when plotted on this scale. It should be noted that the magni- 
tudes of these perturbations grow very rapidly. Hence, the linear state transition ma- 
trix will  propagate this perturbation vector accurately for only a short period of time. 
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The result shown in figure 4 is the difference in the magnitude of the perturbation 
vector as computed by the Keplerian transition matrices and the numerical integration 
of the equations of motion with perturbed initial conditions. The same result is shown 
in figures 5 to 7 for the secular model, the complete model, and integration of the var- 
iational equations, respectively. 

A comparison of figure 4 with figure 5 shows that the maximum e r ro r  in 
the magnitude of the perturbation vector after one revolution (0.5 day) is 10 nautical 
miles for the Keplerian model and 3 nautical miles for the secular model. The com- 
plete model and integration of the variational equations both have e r ro r s  of about 
1 .2  nautical miles as shown by figures 6 and 7 .  The primary source of e r ro r  for the 
Keplerian model is the e r ro r  in mean motion, which results in a secular-error growth 
in the mean anomaly. Consequently, at a given time, the Keplerian transition matrix 
is computed at an incorrect orbital position. This problem is virtually eliminated by 
using a mean o r  average value for the mean motion as evidenced by the secular-model 
results in figure 5. 

The e r ro r s  resulting from numerical integration of the variational equations are 
presented in figure 7. Neglecting the effects of numerical integration e r rors  (round off 
and truncation), the e r ro r s  shown in figure 7 are caused solely by nonlinearities. It 
should be noted that the e r ror  histories for the complete model and for the variational 
equations are identical because the transition matrices agree to four places as shown 
by figure 1. 

A plot of the magnitude of the angle between the perturbation vectors in position 
computed from the Keplerian model and from integration of the equations of motion is 
presented in figure 8. The corresponding results for the variational equations are pre- 
sented in figure 9. The results for the complete model were identical to those of the 
variational equations. Because the angular deviations for the secular model were only 
slightly larger than those for the complete model, the deviations a r e  not shown. Once 
again, the primary source of e r ror  for the Keplerian model is the use of an improper 
mean motion. 

Figures 10 to 16 correspond to figures 3 to 9, respectively, except that these 
results are presented for the velocity-perturbation vector. The same comments made 
for  the position-perturbation-vector e r ro r s  apply to these figures. 

The magnitude of the position-perturbation vector as propagated by the Keplerian 
transition matrix for the Earth orbiter is shown in figure 17. The e r ro r s  in the mag- 
nitude of this vector for the Keplerian and complete models are given in figures 18 and 
19, respectively. The results from the complete model were virtually identical to the 
results from integration of the variational equations. Errors  in the secular model were 
larger than for the complete model but much smaller than those of the Keplerian model. 

Theoretical Analysis of Results 

It should be noted from figures 3 and 10 that the magnitude of the position- 
perturbation vector has grown to approximately 190 nautical miles in position and 
800 ft/sec in velocity after 0.5 day, which is the pericenter passage of the first  revo- 
lution. Although seemingly rather large, these numbers are results of the large 
eccentricity and can be verified easily analytically. Assume that it is desired to 
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compute the perturbations in position and velocity at successive pericenter points 
because of a small perturbation in the state vector at the initial time. The pertur- 
bation in the radius vector A r  will have components A r  and r Af a l o n g  and 

P 
normal to the radius vector, respectively. At the pericenter, r = a( 1 - e); therefore, 
A r  = Aa (1 - e) - a Ae. The component r Af is now computed from df = - de + - dM ae aM 
where 

af af 

and 

Therefore, for small perturbations in the orbital elements, 

- 2 + e cos f sin Ae 2 
- 

l - e  

-3/2 
.t (1 - e2) (1 + e cos f)2 (AMo - Aa t) 

When r Af is evaluated at pericenter, 

l + e  1/2 
(r Af)p =(-) (a AMo - 3nm Aa) (m = 0, 1, 2, . . . )  

where m denotes the number of pericenter passages. Because of the dominance of the 
secular term in (r Af) A r  may be written as follows. 

P’ P 
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A r  = - -  (l+ e)’/’ 3am Aa p 1 - e  

An expression for ha in terms of the perturbations in r and V can be obtained 

fpom the energy expression - & = % - f- Equation (33) results when the first varia- 
tion is determined. 

2 

2a2v AV + 2a2 
2 Ar Aa  = 
r P 

where 

v A V = X  & +.j, AY + Z ai 

and 

A r  = 1 (x Ax + y Ay + z Az) 

(33) 

(34) 

(35) 

An expression for AV is obtained by solving equation (33) for AV and evalu- 
ating for A r  P 

P’ 

When a substitution is made for A r  the following equation results. 
P’ 

14 



2 When the term Aa/a is neglected, 

AV = 
P 

the following equation results. 

(1 + 3nm Aa  
2 r V  l - e  

The magnitudes of the position- and velocity-perturbation vectors a t  pericenter com- 
puted with equations (32) and (38) a r e  185 nautical miles and 775 ft/sec, respectively, 
which are in very good agreement with the results shown in figures 3 and 10. 

CONCLUDING REMARKS 

It has been shown by a numerical example that Brouwer's artificial-satellite 
theory can be used to generate transition matrices that agree closely with numerical 
integration of the variational equations for long periods of time. It has been demon- 
strated that inaccuracies in the mean motion cause the accuracy of a Keplerian transi- 
tion matrix to degenerate rapidly. However, the accuracy of a secular model based on 
mean elements or of a complete model containing secular and periodic terms did not 
decrease for the time period considered. Although the co'mplete model, of course, is 
more accurate than the secular model, using.the complete model involves many more 
terms and requires more computer time. Hence, the secular model should be used 
whenever possible. 

Manned Spacecraft Center 
National Aeronautics and Space Administration 

Houston, Texas, May 27, 1970 
914-50-17-08-72 
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Figure 3. - Position-perturbation magnitude for Keplerian model, 
Mars  orbiter. 
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Figure 4. - Position-perturbation e r ro r  for Keplerian model, 
Mars orbiter. 
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Figure 5. - Position-perturbation e r ror  fo r  secular model, Mars  orbiter. 
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Figure 7. - Position-perturbation e r ro r  for integrated model, 
Mars  orbiter. 
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Figure 8. - Position-perturbation angular e r ro r  for Keplerian model, 
M a r s  orbiter. 
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Figure 9. - Position-perturbation angular e r ror  for integrated model, 
Mars orbiter. 
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Figure 10. - Velocity-perturbation magnitude for  Keplerian model, 
Mars orbiter. 
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Figure 11. - Velocity-perturbation e r ror  for  Keplerian model, 
Mars orbiter. 
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Figure 12. - Velocity-perturbation e r ror  for secular model, 
Mars  orbiter. 

28 



200 

150 

100 0 
Q) In 
\ 
Lfl . 
L e 
5 
8 
0 

m 
J 

.- 
U 

“2 

z U 

Q 

Y .- 
0 
0 - 
9 

-150 
0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.7 2.0 

Time, day 

Figure 13. - Velocity-perturbation e r ror  for  complete model, 
Mars  orbiter. 
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Figure 14. - Velocity-perturbation e r ro r  for  integrated model, 
Mars  orbiter. 
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Figure 15. - Velocity-perturbation angular e r ror  for  Keplerian model, 
M a r s  orbiter. 
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Figure 16. - Velocity-perturbation angular e r ror  for integrated model, 
Mars  orbiter. 
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Figure 17. - Position-perturbation magnitude for Keplerian model, 
Earth orbiter. 
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Figure 18. - Position-perturbation e r ror  for Keplerian model, 
Earth orbiter. 
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Figure 19. - Position-perturbation e r ror  for complete model, 
Earth orbiter. 
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